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SUMMARY 
A survey is presented of some recent developments of the numerical techniques for back analysis in the 
field of geomechanics, with particular reference to tunnelling problems. In the spirit of Terzaghi's 
observational design method, these techniques are seen as practical tools for interpreting the available field 
measurements, in order to reduce the uncertainties that in many instances affect the parameters governing 
the solution of complex geomechanics problems. Both deterministic and probabilistic viewpoints are 
considered and some significant applications to practical problems are illustrated. 

INTRODUCTION 

The design of the majority of rock (or soil) engineering works is customarily carried out in one 
of two ways, which have marked conceptual and operative differences. Following a first possible 
procedure, the experimental investigation aimed at defining the mechanical properties of the in 
situ rock mass is limited in time to the period preceding the beginning of the design process 
and, consequently, of the construction works. It is implicitly assumed that such an investigation 
provides meaningful values for the mechanical parameters of the rock mass and that no significant 
deviations from them will be encountered subsequently. As a consequence, even though the last 
assumption is often unrealistic, no in situ measurements are planned during construction and 
the possibility of modifying the final design, due to unforeseen conditions met in the field, is not 
accounted for. In this sense a 'stiff design is produced. 

Such a procedure, which does not involve any interaction between the geotechnical consultant 
and the contractor, presents non-negligible drawbacks.' In fact, in order to overcome the 
uncertainties caused by the limited experimental information available and to reduce the 
possibility of overestimating the rock mass quality, the designer might (a) adopt a large factor 
of safety, or (b) introduce hypotheses or pieces of information derived from cases similar to the 
one under examination. 

While the first choice is evidently non-economical, the second one can be unsafe. In fact, 
geological details which may be easily overlooked during the preliminary investigation can 
significantly affect the overall behaviour of the rock mass and, as a consequence, apparently 
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similar field conditions can actually lead to quite different construction problems requiring 
different design strategies. 

In order to avoid the above drawbacks, an alternative procedure was introduced by Terzaghi for 
the design of dams and large geotechnical works.2 This procedure is known as the observational 
design method and requires close co-operation between contractor and geotechnical consultant. 
A measurement program is set up, the characteristics of which depend on the problem at hand 
and which should not interfere appreciably with the field operations, so that the overall behaviour 
of the rock mass can be monitored during construction. Then, the experimental measurements 
(e.g. displacements) are checked against the corresponding quantities calculated on the basis of 
the rock mechanical parameters adopted in the design. If a non-negligible discrepancy is observed 
between the two sets of data, the rock mass parameters are modified in such a way that this 
discrepancy is reduced to a minimum. This leads to a new estimate of the rock mass properties 
which permits more refined calculations and possible modifications of the original design. 

It can easily be recognized that in order to apply this second ‘flexible’ design procedure it is 
necessary to define a way for refining the values of the rock mass properties on the basis of the 
available in situ measurements. This is customarily referred to as the back analysis or 
characterization problem and can be stated as follows: find the values of the mechanical 
parameters that when introduced in the stress analysis of the problem under examination lead 
to results (e.g. displacements) as close as possible to the corresponding in situ measurements. 

It is known that the experience and the judgement of the engineer are fundamental ingredients 
for every back analysis. They enable choosing, for instance, a suitably simplified geometrical 
model for a complex geological formation, or a reasonable material behaviour (elastic, 
elasto-plastic, viscous, etc.) for a specific rock type. Poor, or even incorrect, results of back 
analyses are often due to errors in these initial engineering  choice^.^ 

It is important to note, however, that the designer is not restricted to using his judgement 
only for solving the complex problem of discrepancy minimization between a set of field 
measurements and the results of stress analyses. In fact, numerical tools are available nowadays 
which can provide him with valuable help at an acceptable computational cost. 

Techniques of this type, developed in the field of system identification: have been successfully 
applied to various engineering problems, concerning structural dynamics (see, for example, 
references 5-7), soil dynamics (see, for example, reference 8) and structural plasticity (see, for 
example, References 9-1 1). Here a discussion is presented on some recent developments of the 
numerical techniques for back analysis and on their application in the field of rock (and soil) 
engineering,’ 2 *  

Before going into details it is necessary to point out that these procedures are applicable to 
a range of problems broader than that previously mentioned, concerning only the calibration 
of material models. For instance, techniques belonging to this category have been developed for 
determining the earth pressure distribution acting on embedded or retaining structures, and they 
can be also applied to the back analysis of geometry parameters, such as the dimensions of a 
soft inclusion or of a shallow cavity in a rock mass. 

Various topics will be dealt with in the subsequent sections. First, the back analysis of the 
rock pressure acting on retaining structures is considered. Under the assumption of linear material 
behaviour these characterization problems are governed by a set of linear equations; therefore 
they are also referred to as ‘linear’ back analysis problems. Subsequently, the characterization 
of the material parameters of in situ rock mass is discussed. In this case the back analysis problem 
turns out to be nonlinear, even in the presence of linear material behaviour, and suitable 
minimization techniques have to be adopted for solution. 

While the above topics are discussed in a deterministic context, a probabilistic viewpoint is 

with particular reference to tunnelling problems. 
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considered for the third point, concerning the influence of the errors affecting the experimental 
measurements on the results of a back analyses. Finally, some applications of characterization 
techniques to actual engineering problems are illustrated in association with the monitoring of 
the stability of tunnels, and some comments are presented about possible further developments 
of the research in this field. 

Notation. Boldface lower-case and capital letters denote, respectively, column vectors and 
matrices; superscripts T and -1 mean transpose and inverse. 

BACK ANALYSIS OF THE ROCK PRESSURE 

In most cases the back analysis of the rock pressure acting on embedded or retaining structures 
is carried out by adopting as input data the displacement components measured at selected 
points of the structure itself. 

The solution of this problem can be reached on the basis of equations having the same order 
of those solving the corresponding stress analysis problems (i.e. of the equations leading to the 
displacements of the retaining structure once the rock pressure distribution is known). In 
particular, if the stress analysis is governed by a set of linear equations (as in the case of linearly 
elastic material behaviour and small displacement regime) also, the back analysis can be 
formulated in linear terms. 

As a first, simple example consider the back analysis of the earth pressure acting on a vertical 
sheet pile. Assuming that the horizontal deflection y of the structure has been measured at  
various elevations z, an approximation of the deformed structural shape can be obtained, for 
instance, by the following sine and cosine series; 

N 

y(z )  = [ai sin (inz/L) + b, cos (izz/L)] 
1 

where L is the height of the structure. If the number m of measured displacements is greater than 
2n, the values of the unknown coefficients ai and bi can be obtained by a standard least square 
minimization. Having defined the deformed shape y(z ) ,  it is possible to work out the earth 
pressure distribution p(z)  by means of the well-known equation of the elastic curve, 

EJy'"(z)  = p(z) 

which relates the unknown load distribution p(z)  to the fourth derivative of y(z) .  In equation 
(2), EJ represents the flexural stiffness of the sheet pile. 

This simple technique for back analysis presents the shortcoming of requiring several 
derivations of the function approximating the deformed shape. Since these derivations tend to 
increase the original error affecting the function y(z), which in turn depends on the measurement 
error, the final load distribution may be barely reliable unless high precision measurements are 
used as input data. 

A technique more sophisticated than the above one has been developed for the back analysis 
of the rock pressure on tunnel and is known as the integrated measuring technique. 
In order to apply this back analysis procedure it is necessary to subdivide the liner into segments 
of circular arch; the stretch L and the 'height' F of each segment are measured by means of high 
accuracy instruments in the undeformed (L and F) and deformed ( E  and F )  configurations 
(Figure I), and the increments of these quantities, denoted by 1 and f, are calculated: 



558 G.  GIODA AND S. SAKURAI 

Figure 1 .  An arch segment in the undeformed (A,  B and C )  and deformed (A, B and c) state (after Reference 14) 

If the angle q(Figure 1) is sufficiently small, which is an acceptable assumption in practice when 
the following inequalities hold, 

the increments of curvature x and axial strain E of each segment can be evaluated according to 
the following equations: 

In equations (4) and (5 ) ,  R is the radius of the segment of circular arch, h is the thickness of the 
liner and e is the distance between the measurement point and the axis of the lining, as shown 
in Figure 1. 

The distributions of I and f along the curvilinear co-ordinate s of the lining are arrived at by 
interpolating with suitable approximating functions their local values obtained from the field 
measurements. Then, the axial force N and the bending moment M in the linear are calculated 
by substituting these function in the following well-known relationships: 

N ( s )  = E(s )EA;  M(s) = x(s)EJ (6a, b) 
Finally, the normal p and shear c tractions exerted by the rock on the liner are obtained on 
the basis of the internal force distributions N and M, by imposing the equilibrium conditions 
of an infinitesimal portion of the arch (Figure 2): 

p=x-ds2-; N d 2 M  t = - - + -  1 dM dN 
R ds ds 

An application of the integrated measuring technique concerning the Gotthard road tunnel 
has been presented in Reference 14. Some of the results of this study are reported in Figures 3 
and 4 showing, respectively, the measurements performed along the liner and the results of 
back analysis. 

The approaches discussed so far consider as input data only the displacement components of 
structural points. It has to be considered however that other data are sometimes available, 
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Figure 2. Acting internal and external forces: (a) a finite segment of the lining carrying a distributed rock load; (b) 
infinitesimal element for equilibrium considerations (after Reference 14) 
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Figure 3. Distribution of the measured values F and L along the arch (after Reference 14) 

concerning for instance the values of the earth pressure measured by pressure cells or values of 
concentrated loads due to anchors. A back analysis technique based on the finite element method 
and capable of taking into account displacements and other types of measured quantities has 
been presented in Reference 16. The use of this technique in the field of tunnel engineering was 
also suggested in Reference 17. 

In order to illustrate the basis of the approach, consider the finite element mesh modelling a 
retaining structure and subdivide the elements into n, sets or groups, so that the unknown earth 
pressure components normal and tangent to the elements of the ith set can be approximated 
by linear combinations of suitable functions: 

qi = Gi(xi)ai (8) 
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Figure 4. Distribution of the calculated moment and normal roorce along the arch ( *  = Load cell measurement of normal 
force N at A and B )  (after Reference 14) 

In equation (8) the index i denotes the element set, q is the vector of earth pressure components, 
G is the matrix of the approximating functions, a is the vector of unknown coefficients and x 
is the co-ordinate vector. 

Denoting with Ni the matrix of the shape functions relating the displacements of the nodes 
of the ith element set to the displacement distributions within the elements, the nodal force 
vector equivalent to the earth pressure distribution is defined by the following integral: 

f ,  = jA,N'TiqidA (9) 

Here, A i  is the area of the surface facing the ground of the ith element set and Ti is a transfer 
matrix relating the pressure components in the local reference frame (tangent and normal to 
the surface of the structure) to those in the global reference system. 

Substituting equation (8) into equation (9), and writing equation (9) for all the sets of elements, 
a relation is obtained for the entire structure between the nodal forces f equivalent to the earth 
pressure and the unknown coefficients a. This equation is expressed in the compact form, 

f = S a  (10) 
where S is a matrix depending on the shape of the structure, on the characteristics of the adopted 
finite elements and of the pressure approximating functions. 

I f  the performed in situ measurements provide a set of displacements and rotations of structural 
points (that coincides with nodes of the mesh), the well-known linear relationship between nodal 
forces f (or coefficients a, through equation 
matrix K, can be partitioned as follows: 

10) and nodal displacements u, through the stiffness 
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In this equation, vector u; collects the displacement components that have to be constrained 
in order to eliminate all the rigid movements of the structure (hence, without losing generality, 
u: = 0), u: is the vector of measured displacements and u3 collects the remaining (unknown) 
nodal displacements. A static condensation of equation (1 1) and some algebraic manipulations 
lead to the following equations: 

C a = u t ;  D a = O  (12.13) 

where 

C=[K22  - K Z ~ K ~ , ’ K ~ Z ] - ’ [ S Z  -Kz,Ki,’%] (14) 

D=K12C+K13K3;1[S3-K32C]-S1 (15) 
Equations (12), (1 3) represent the first basic set of equations governing the back analysis problem; 
equation (1 2) relates the unknown parameters a to the measured displacements u: and equation 
(13) ensures that the no ‘fictitious’ nodal reactions are generated at the nodes where the 
displacements u; are defined. 

In some cases it is possible to perform direct measurements of the earth pressure at some 
points of the structure (e.g. by means of pressure cells). These data, grouped in vector q*, can 
be expressed through equation (8) as linear combinations of some of the coeflicients of vector a: 

La = q* (16) 
Matrix L in equation (16) consists of parts of matrices Gi computed at the locations where the 
earth pressure components are measured. 

Assembling together equations (12), (13) and (16), a system of linear equations is arrived at 
the solution of which, if the number of measured displacements and pressure is greater than the 
number of unknown parameters, can be based on the usual least square minimization: 

Note that additional conditions, expressed as linear combinations of the coefficients a, could be 
considered in the problem formulation. For instance, one may impose continuity between the 
pressure distributions, and their derivatives, at the boundary between two adjacent groups of 
elements. Information concerning the location and direction of concentrated loads due to tie 
backs, measured stresses or strains at  some points of the structure, etc., can also be taken into 
account. This back analysis technique has been applied to the determination of the earth pressure 
acting on a 28 m high diaphragm wall supported by three series of tie backs. 

In situ measurements were performed at the end of construction in order to define the deformed 
configuration of the structure and the tensile forces on the anchors (Figure 5). On the basis of 
these data two back analyses were carried out. In both of them the structure was subdivided 
into four zones, the end points of which correspond to its connections with the anchors, and 
only the normal component of the earth pressure was considered as unknown. The first analysis 
assumes linear pressure distribution on each zone of the wall, while parabolic distributions were 
assumed in the second analysis. Additional conditions introduced in the calculations enforce the 
pressure continuity between two adjacent zones and zero pressure value at  the upper end of the 
structure. 

The results of analyses are shown in Figure 6, where the numerical results (dashed lines) are 



562 G.  GIODA AND S. SAKURAI 

(2. m. a o. 4. o. 0. mm 
I 

44.t + 
‘.:I ’ ‘  

t 

m 

I 

I 

I 

I 

Figure 5. Measured displacements (dots) and anchor forces for a diaphragm wall (after Reference 16) 

compared with those (solid lines) obtained on the basis of the classical solution proposed in 
Reference 18. 

I t  is worth while observing that, regardless of the procedure adopted for back analysis, some 
requirements have to be fulfilled by the input data. A first ‘quantitative’ requirement concerns 
the number of measurements that has to be equal to or greater than the number of unknown 
parameters. In addition, various requirements on the ‘quality’ of the input data have to be 
fulfilled in order to obtain meaningful results from a back analysis. Among them a major role 
is played by the locations where the measurements are performed and by the direction in which 
the displacement are measured. For instance, it can easily be seen that the earth pressure 
distribution on the entire liner of a tunnel can hardly be determined on the basis of measurements 
performed in the vicinity of the tunnel crown only, regardless of their number. Note that equivalent 



BACK ANALYSIS IN GEOMECHANICS 563 

-13.0 

- 20.0 

-22.0 

- 28.0 

0. 5.  10. t ma 

V E R M V I N  

Figure 6 .  Comparison between back calculated (dashed lines) and analytical (solid line) earth pressure distribution (after 
Reference 16) 

requirements about the quality19 and the quantity of the input data exist also for the back 
analysis of material parameters which will be discussed in the next section. 

BACK ANALYSIS OF MATERIAL PARAMETERS 

As previously observed, the back analysis of mechanical parameters represents a nonlinear 
problem even in the simple case of linear elastic material behaviour. This can be shown by briefly 
recalling the basic characteristics of a technique for the back analysis of elastic constantszos2' 
which is based on a finite element approch originally proposed in Reference 22 for structural 
engineering problems. 



564 G .  GIODA AND S. SAKURAI 

In order to apply this procedure it is necessary to establish a linear relationship between the 
stiffness matrix of each finite element Ke and the unknown material parameters. In the case of 
isotropic material behaviour, such a relationship can easily be obtained by describing the elastic 
behaviour in terms of bulk B and shear G moduli: 

K'= BK; + CKZ (18) 
The two matrices on the right-hand side of equation (18) represent, respectively, the volumetric 
and deviatoric stiffness of the eth element. Consequently, the stiffness matrix of the assembled 
finite element model can be written in the following form: 

Zn 

K = C p i K i  (19) 
1 '  

where n is the number of different materials (2n being the number of unknown elastic parameters) 
and Ki is the assembled stiffness matrix obtained by setting all the parameters to zero except 
for the ith parameter set equal to 1. 

Assuming that m displacement components of points of the rock mass are measured in the 
field, and that these points coincide with nodes of the finite element mesh, the system of linear 
equations governing the behaviour of the finite element discretization can be partitioned as 
follows: 

where vector u: collects all the measured displacement components, and f ,  and f2 are known 
nodal force vectors. 

A static condensation of equation (20) leads to 

(Ki I - QKzib:  = f i  - Qfi (21) 
where 

Taking into account equation (19), equation (21) can be written in the following form: 

$ piri = fi - Qfz (23) 

where 

The stiffness matrices in equation (24) are obtained by partitioning matrix Ki with the same 
criteria used in equation (20). 

Grouping the unknown elastic parameters in the 2n vector p, and grouping vectors ri in the 
m x n matrix R, 

equation (23) yields the following relationship 

R p = f 1  -Qf2 (26) 
that governs the calibration problem. 

Assuming that the number of data (measured displacements) exceeds the number of unknowns 
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(elastic constants), a standard least square minimization can be applied to equation (21), leading 
to the following nonlinear equation system (note in fact that the matrix of coefficients R depends, 
through matrix Q, on the unknown vector p): 

RTRp = RT(f, - Qf,) (27) 
The solution of the above system is reached with a simple iterative procedure which requires 
at every step the inversion of a part (K2J of the assembled stiffness matrix, cf. equation (22), 
calculated on the basis of the parameters determined at the end of the preceding iteration. 

Other approaches for the back analysis of elastic parameters have been proposed (see, for 
example, References 23 and 24) which have less general applicability, but require also less 
programming effort than the one previously described. For instance, the one proposed in Reference 
24 is applicable only to the determination of the elastic constants (Young's modulus E and 
Poisson's ratio v) of homogeneous rock masses, but offers the advantage of not requiring the 
implementation of ad hoc computer codes. 

The basis of this technique can be summarized as follows. A series of finite element analyses 
is performed, assuming E = 1 and varying the values of Poisson's ratio, obtaining one set of 
nodal displacements for each of them. Let us denote with pYeld the displacement components 
measured in the field ( i  = 1,m) and with p'"(v) the corresponding values obtained by the finite 
element solution based on a given Poisson's ratio. 

On these bases, it is possible to determine one 'optimal' value of Young's modulus for each 
analysis (i.e. for each value of v) and for each measurement point by means of the following 
simple equation: 

E,(v)  = p:E(v)/pf '"d (28) 
The results can be plotted as shown in Figure 7(b), where the curves refer to the vertical u and 
horizontal u displacements caused by a trapezoidal load distributions at various points of 
homogeneous rock mass (see Figure 7a). If all curves meet approximately at the same point, the 
optimal values of the elastic constants for the entire rock mass are readily determined. 

In addition to its notable simplicity, this technique presents the advantage of providing an 
indication about suitable locations for the measurements points. This is obtained by examining 
the shape of the E-v  curves. If two of these curves have quite similar shapes, the two corresponding 
measurements provide almost the same information and consequently one of them could be 
omitted from the measurement program. 

It has to be considered, however, that this method would not lead to useful results when the 
E-v curves do not intersect each other almost at the same point. This is likely to happen, for 
instance, when non-negligible experimental errors affects the measured displacements. 

An alternative procedure, with respect to the previous one, can be based on the direct 
minimization of the discrepancy between the field measurements and the corresponding 
numerically evaluated quantities. This approach presents the advantage of avoiding the 'inversion' 
of the stress analysis equations which was required by the above technique operating through 
the least squares method. 

The following error function can be adopted as a practical definition of the discrepancy between 
the measured displacements (denoted by an asterisk) and those deriving from a numerical stress 
analysis in which a given set of material parameters p is adopted: 

Err = [ur  - ui(p)12 t 
Clearly, other definitions are possible, for instance considering only the maximum absolute value 
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of the differences in equation (29), or dividing the terms of the summation by the corresponding 
measured value in order to obtain a non-dimensional definition of the error. 

Since the error function depends through the numerical results on the parameters to be back 
calculated (which in this context have a rather general meaning and may correspond to elasticity 
or shear strength properties, viscosity coefficients, etc.), the back analysis reduces to determining 
the set of parameters that minimizes the error function, i.e. that leads to the best approximation 
of the field observation through the chosen numerical model. 

The error defined by equation (29) is in general a complicated nonlinear function of the 
unknown quantities, and in most cases the analytical expression of its gradient cannot be 
determined. This is particularly evident for nonlinear or elasto-plastic problems. Therefore, the 
adopted minimization algorithm must handle general nonlinear functions and it should not 
require the analytical evaluation of the function gradient. 

A comprehensive discussion of the algorithms fulfilling the above requirements, known in 
mathematical programming as the direct search methods, can be found for example, in 
Reference 25. These are iterative procedures which perform the minimization process only by 
successive evaluations of the error function. In the present contest, each evaluation requires a 
stress analysis of the geotechnical problem on the basis of the trial vector p chosen for that 
iteration. Some comments on the use of the direct search method for back analyses in the field 
of geomechanics have been presented in Reference 26. 

In most practical cases some limiting values exist for the unknown parameters. For instance, 
the modulus of elasticity cannot reach negative values. These limits, expressed by inequality 
constraints, can easily be introduced into a direct search algorithm by means of a penalization 
procedure. When a point in the space of the free variables is reached outside the feasible domain, 
the error function is assigned a large value so that the minimization algorithm automatically 
drives back the optimization path into the feasible region. This penalty approach turns out to 
be general and simple to implement. In fact, no assumptions are required on the characteristics 
of the constraints (e.g. about their convexity) and the computer program for constrained 
minimization can easily be obtained with few modifications of the corresponding unconstrained 
code. 

From the computational viewpoint, the back analysis approach requiring the minimization 
of the error function expressed by equation (29) presents non-negligible differences with respect 
to that based on the least square method. It turns out, in fact, that the least square technique, 
specifically developed for the calibration of elasticity constants, converges towards the optimal 
values of the parameters faster and ‘smoother’ than the direct search procedure. As a consequence, 
the computer cost required by the first solution method is in general smaller than that of the 
second one. 

The different performance of the two approaches can easily be seen, for instance, by applying 
both of them to the back analysis of the elastic constants (bulk modulus B and shear modulus 
G )  of the rock underlying the previously mentioned embankment. The results of such analyses 
are summarized by the diagrams in Figure 8, showing the values of B and G obtained at each 
iteration of the solution process. The direct search algorithm adopted for this example is the 
so-called ‘Simplex’ method presented in Reference 27. 

It has to be recognized, however, that back analysis procedure based on direct search algorithm 
present also a non-negligible advantage with respect to the least squares approach. In fact, while 
the least squares procedure requires the implementation of an ad hoc computer program, the 
direct search approaches can be developed on the basis of standard computer codes for nonlinear 
function minimization in which the finite element program for stress analysis is introduced as 
a subroutine. This requires some simple changes of the original finite element code and a limited 
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Figure 8. Variation of the bulk and shear moduli during the error minimization process. ( L  refers to the least squares 
algorithm; S refers to the Simplex algorithm) (after Reference 21) 

programming effort. In addition, the same stress analysis and error minimization programs can 
be used for various characterization problems, merely by considering the calculated quantities 
as functions of the unknown parameters, regardless of their nature. 

For instance, direct search algorithms have been applied to the calibration of elasto-plastic 
and visco-plastic material models for in situ rock m a ~ s e s ~ ~ ~ ~ ~  and to back analyses related to 
slope stability  problem^.^' 

Another technique for the back analysis of elasticity parameters has been proposed in References 
31 and 32, where the conjugate gradient method33 is adopted for minimizing the error function 
in equation (29). Also in this case the final solution is reached by means of an iterative process, 
but while the previously mentioned direct search algorithms require at every iteration only the 
evaluation of the error function, the gradient type techniques require also the determination of 
the function derivatives with respect to the free variables. Under the assumption of linear material 
behaviour, the analytical expression of these derivatives can be worked out and directly 
programmed into the computer code developed for the solution of the calibration problem. 

The results obtained in the solution of some significant examples show that this method is 
characterized by a fast convergence. This should compensate the additional computer effort, 
with respect to the direct search approaches, required by the gradient evaluation, leading to an 
overall performance comparable to that of the least squares technique. A comparative evaluation 
of these solution approaches is presented in Reference 34. 
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The same conjugate gradient method was also adopted for the back analysis of the elasticity 
and permeability constants of soft clay deposits.3s The calibration is based on the ‘coupled’ 
finite element approach for consolidation analysis in which the simultaneous problems of 
deformation of the soil skeleton and seepage of the pore fluid are solved. In this case, a term 
was added to the error function in equation (29) in order to account for the discrepancy between 
calculated and measured pore pressures. 

It can be observed that a significant amount of research has been devoted to the back analysis 
of the mechanical properties governing the consolidation of natural clay deposits (see, for example, 
References 36-40). This is probably due to two main causes. First, it is well known that laboratory 
tests on small-scale samples can hardly provide meaningful values of some parameters (such as 
the coefficients of permeability) characterized by a marked space variation in the field. 
Consequently, it seems preferable to determine their ‘average’ in situ value through the back 
analysis of field measurements. 

In addition, these measurements performed at various times during the consolidation process 
can be used to refine the numerical model adopted in the calculations. This permits, in turn, to 
improve with time the quality of important engineering predictions concerning, for instance, the 
value of the final settlements or of the time necessary to reach a given percentage of it. 

A PROBABILISTIC APPROACH TO BACK ANALYSIS 

The use of probabilistic approaches for the calibration of numerical models is relatively frequent 
in the field of geomechanics (see, for example, References 41-44. In fact, important practical 
aspects can be taken into account by means of these approaches, such as: the uncertainties 
related to the definition of the soil layers or of the space variation of the mechanical properties; 
the influence of the back calculated parameters of the experimental error affecting the field 
measurements; etc. 

Among various alternative probabilistic procedures, the so-called Bayesian a p p r ~ a c h ~ ’ . ~ ~  
presents non-negligible  advantage^.^'-^^ First, the subjective judgement of an expert, or other 
valuable a priori information on the parameters to be back calculated, can be taken into account 
in addition to the experimental data. Note that this is quite an important point when dealing 
with geomechanics problems. In many cases, in fact, the opinion of an experienced consultant 
has a ‘weight’ comparable to that of costly in situ measurement program. It can be also observed 
that the above feature makes the Bayesian calibration methods similar, in a sense, to the reasoning 
process followed by the designer who, combining his experience with the data from the field, 
formulates a reasonable guess on the values of the parameters to be adopted in the calculations. 

A second important characteristic of these methods is that the estimation of the unknown 
parameters can be ‘updated’ if additional experimental information becomes available during 
time. This turns out to be extremely useful when dealing with time-dependent (e.g. consolidation) 
processes, i.e. when subsequent sets of field measurements can be performed in order to obtain 
a continuous refinement of the estimation of the soil properties. 

Recently,” the Kalman filter theory5’ has been proposed as an alternative probabilistic 
approach to calibration analyses in soil mechanics. 

In the following the discussion is limited to a brief outline of a Bayesian approach for the 
back analysis of material parameters in the presence of data affected by experimental errors. It 
can be mentioned that other methods are applicable to this type of analysis, like the ‘simulation’ 
technique adopted in Reference 52, based on formulations simpler than the one here discussed. 
However, these methods usually require a computational effort much larger than that necessary 
with a Bayesian procedure, especially when dealing with a relatively large number of free variables, 
and this strongly limit their use in the solution of practical problems. 
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Consider the experimental measurements u* as affected by errors, which are grouped in vector 
Au and are seen as random variables, and assume that the expected average value of the error 
(expressed by means of the 'expectation' operator E 1 . 1 )  vanishes: 

ElAul= 0 (30) 
Assume also that the error covariance matrix C,, that depends on the measuring device accuracy, 
is known: 

C, = EIAuAuTI (3 1) 
If all measurements are statistically independent, C, is a diagonal matrix the entries of which 
(variances) are related to the resolution of the instruments. 

Also the unknown parameters p are regarded as random quantities and it is assumed that the 
following expectations are known: 

P o  = Elpl; c; = El CP - Pol  CP - POITI (32a,b) 
In the above equation, p, and C; represent the a priori information on the unknown parameters, 
deriving from the experience of the engineer or from previous back analyses of different set of 
experimental data. If  the entries of vector po are uncorrelated, Ci is a diagonal matrix. Note 
that the values of the entries of this matrix increase with decreasing 'reliability' of the initial 
information on the unknown parameters. 

The Bayesian back analysis consists in combining the a priori and the experimental information, 
in order to achieve the best estimate of the unknown parameters. Also in this case, as in a 
deterministic back analysis, a numerical model is necessary which is used to calculate the 
quantities u, corresponding to the measured ones u*, on the basis of a trial parameter vector p. 

Consider first the simple case in which u is linearly dependent on p, through a constant matrix 
L and constant vectors u' and p': 

u(p) = u' + L{p - p'} (33) 
The best estimate p of p can be obtained by minimizing with respect to the parameter vector 
the following error function: 

which consists of two parts: the first represents the discrepancy between measured and calculated 
data and the second is the discrepancy between assumed and current parameters. The 
discrepancies are weighted by means of the inverted covariance matrices which tend to vanish 
with decreasing accuracy, or reliability, of the experimental data and of the a priori infomation. 

By introducing equation (33) into equation (34), and by imposing that the derivatives of the 
error function with respect to p vanish, the following system of linear equations is arrived at: 

[LTC; L + (c;) - '1 p = LTC; [u* - u' + Lp'] + [c;] - Po (35) 
the solution of which leads to the optimal vector p: 

p = [I - M,L]p, + M,u* - M,[u' - Lp'] 

M, = [LTC,-'L + (C;)-']- 'LTC;' 

(36) 

(37) 

In the above equation, I is the identity matrix and 

In order to obtain the covariance matrix associated with vector p, it is necessary to recall that 
if a vector, say a, is linearly dependent on a vector b of random variables through a constant 
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matrix A, 

a = A b  (38) 
the following relationship exists between the covariance matrices, C, and C,, associated with 
the two vectors: 

C, = ACbAT (39) 
Due to the facts that a linear relationship exists between vectors p,p, and u* (cf. equation 36), 
and that p, and u* are statistically uncorrelated, the following expression can be established on 
the basis of equation (39) for the covariance matrix C, associated with the optimal vector p: 

(40) 
It is important to point out that equations (36) and (40) are not directly applicable to the majority 
of calibration problems in the field of geomechanics, due to the fact that u is in general a 
nonlinear function of p. In order to solve the nonlinear back analysis problem an iterative 
procedure can be adopted, based on the linearization of the u-p relationship in the neighbourhood 
of the current parameter vector p’ by means of a Taylor’s series expansion truncated at the linear 
terms (cf. equation 33): 

(41) 
The main steps of the iterative solution procedure for the nonlinear problem can be summarized 
as follows: 

1. The current parameter vector p‘ is set equal to its initial estimate p,, 
2. The quantities u‘ = u(p’) are determined by means of a stress analysis of the chosen numerical 

model. 
3. The current ‘sensitivity’ matrix L(p’) is evaluated numerically as a finite difference approxi- 

mation. This implies to solve n stress analysis problem ( n  being the number of unknown 
parameters p i ) .  The vector of parameters used in each analysis coincides with vector p’, except 
for the ith component which is perturbed by a small quantity Api. Denoting with Aui the 
difference between the quantities obtained at step 2 and those derived from the ith ‘perturbed‘ 
analysis, the sensitivity matrix can be expressed as follows: 

C, = [I - M,L]C”,CI - M,LIT + M,C,MT 

N P )  = NP‘)  + L(P’){P - P’> 

L(P‘)= CAUIIAP~ I A U ~ / A P ~ J . . . I A U ~ ~ A P ~ I  (42) 
4. Vector p is evaluated by means of equation (36), where the current values of L,u’ and p’ are 

5. The iterations end when the difference between p’ and p becomes smaller than a pre-assigned 

When convergence is reached, the final covariance matrix C, is calculated by means of equation 
(40). The main diagonal of this matrix contains the variances which define the uncertainties of 
the estimated values of the parameters. I t  is worth observing that, when a reliable initial guess 
on the parameters can be formulated, the Bayesian calibration approach is applicable also if 
the number of unknown parameters exceeds the number of in situ measurements. 

Consider in fact the limit case in which no experimental information is available. This case 
can be seen as equivalent to the situation in which the accuracy of the experimental data is so 
poor that the entries of the corresponding inverted covariance matrix C, vanish. Consequently, 
equation (36) reduces to the trivial form expressing the expected equivalence between the optimal 
values of the parameters p and their initial estimate p,. 

introduced. 

tolerance, otherwise p’ is set equal to p and the process is continued from step 2. 
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Another limit case is when no (I priori information is available, or when its reliability is so 
low that the corresponding inverted covariance matrix coincides with the zero matrix. In this 
case equation (35) becomes 

CLTCu- ' L] p = LTC; ' [u* - u' + Lp'] (43) 
Furthermore, if all the (uncorrelated) in situ measurements have the same accuracy, matrix 
C, can be eliminated from equation (43), thus obtaining the following least square expression for 
the best estimate of the unknown parameters: 

LTLp = LT[U* - u' + Lp'] 

Note, however, that the covariance matrix of the measurements still affects the covariance 
matrix associated with the best estimate of the parameters. In fact, equation (40) becomes 

C, = M,C,M,' 
where 

M, = [ L' C,- L] - LT C u- 

(45) 

An application of this probabilistic approach has been discussed in Reference 53, with 
reference to the back analysis of the mechanical characteristics of a soft clay deposit, underlying 
a railroad embankment, in which sand drains were installed in order to increase the rate of the 
consolidation process. The available data consists of settlements and pore pressures measured 
during time in the vicinity of the embankment. The back analysis was performed by subdividing 
the soil mass into zones (Figure 9) having different mechanical properties, and considering as 
unknowns the permeability coefficients (in the vertical and horizontal directions) and the elastic 
modulus for each zone. 

Two problems were solved separately adopting the same finite element discretization. The 
first one, based on the 'long term' (or final) values of the in situ measurements, led to the elastic 
moduli for the various zones of the deposit. The second problem concerned the determination 
of the permeability coeflicients and was based on the entire set of data collected during time. 

The entries of the diagonal covariance matrix C, associated with the in situ measurements 
was defined considering both the accuracy of the measuring devices and the lack of information 
on the seasonal variation of the water table level. The initial values of the permeability coefficients 
were determined by simple calculations, based on the results of laboratory tests on clay samples, 
in which the sand drains were introduced in an approximated way. The corresponding initial 
variances accounted for the large uncertainty of this initial estimation. 

In Figure 10 a comparison is shown between some of the measurements performed in situ 
during time and the numerical simulation of the construction process of the embankment, based 
on the back calculated parameters of the clay deposit. A satisfactory agreement can be observed 
between experimental and numerical results, but for the pore pressures. In fact, the data from 
the installed piezometers were affected by seasonal variations of the water table that were not 
known with sufficient accuracy. 

As previously observed, in addition to the optimal values of the parameters, the Bayesian 
method of analysis provides also the associated final covariance matrix that permits a quantitative 
evaluation of the reliability of the results of back analysis. For the problem at hand, this additional 
information shows that (a) the horizontal coefficients of permeability are determined with an 
accuracy higher than that obtained for the vertical ones, and (b) the accuracy of the elasticity 
moduli of the soft zones (having a marked influence on the settlements) is larger than that of 
the relatively hard ones. 
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c 

C 

Figure 9. Finite element mesh and boundary conditions (zone I represents the zone with vertical sand drains) (after 
Reference 53) 

Figure 10. Consolidation analysis: (a) embankment height; (b) surface settlement (at point P, in Figure 9); (c) lateral 
movement (at point P, in Figure 9); (d) pore water pressure (at point P, in Figure 9) (black dots = experimental data) (after 

Reference 53) 
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AN APPLICATION OF BACK ANALYSIS IN TUNNELLING ENGINEERING 

One of the most important and commonly met problems in tunnelling engineering concerns 
the assessment of stability of underground openings on the basis of displacements measured 
during the excavation works. The various methods adopted in practice for solving this problem 
require as input data the in situ stress state and the mechanical properties of the rock mass. 
Unfortunately, the simultaneous evaluation of both parameter sets on the basis of the measured 
displacements is not an easy task. In fact, the standard procedures for the interpretation of field 
measurements require either known initial stresses, in order to determine the material constants, 
or known material parameters, in order to evaluate the initial stress state. 

It has to be considered, however, that the determination of the 'true' initial stresses and rock 
mass properties would not be necessary, if the back analysis of the available field measurements 
could provide an alternative, reliable way for evaluating the stability of excavation. 

Based on the above considerations, a back analysis method has been presented in 
References 54-56 for monitoring the stability of underground openings, which rests on the 
concepts of 'normalized' in situ stresses and 'critical strain' for the rock mass and does not need 
the separate determination of the two above-mentioned sets of parameters. A typical feature of 
this approach is the relatively small amount of calculations required. This is an important point 
since the back analysis, in order to be effective, should be simple enough to permit the 
interpretation of the measured data in a limited time and directly at the construction site, e.g. 
through the use of a microcomputer. 

The main assumptions on which this procedure rests are summarized in the following points: 

1. The deformational behaviour of the rock mass is idealizd by a homogeneous, isotropic and 
linearly elastc material, so that the mechanical constants reduce to Young's modulus E and 
Poisson's ratio v. Since v has the least influence on the results of stress analyses, an appropriate 
value can be chosen for it and adopted in the calculations. 

2. The elastic constants of the lining are known. 
3. The in situ stress state linearly increases with depth due to the own weight of the rock, while it 

remains constant along the axis of the tunnel. Based on these assumptions, the problem can be 
treated in two-dimensional, plane strain, conditions and only three components of the in situ 
stress state u" can be considered: 

The variation due to the excavation of the stress state in the rock mass can be evaluated through 
a finite element analysis in which equivalent nodal forces f", corresponding to the release of the 
initial stresses, are applied to the contour of the opening. These forces can be expressed in 
integral form, 

where the summation goes over the elements facing the excavation contour, N and B are the 
matrices of the element shape functions and of their derivatives, y is the vector of the body 
force components due to gravity, and Vi is the volume of the ith finite element. 

The stiffness matrix K of the finite element mesh that discretizes both the liner and the 
surrounding rock can be expressed as 

K = ERK* (49) 
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where 
K* = K R  + R K L ;  R = E J E R  

In the above equations, E R  and E L  are the elastic moduli of rock and lining; KR and K L  are the 
stiffness matrices of the portions of the mesh corresponding to the rock mass and the liner 
evaluated, respectively, assuming unit values for E R  and E L .  Note that the coefficient R can be 
considered equal to zero if the liner is not installed, or if its stiffness is negligible with respect 
to that of the rock. 

Taking into account equations (47), (48) and (49), the liner relationship between nodal 
displacements u and nodal forces, through the stiffness matrix K ,  can be written in the following 
convenient form: 

Here , f:, and f" are 'equivalent' force vectors corresponding to unit values of each initial 
stress components in turn. 

Let us define u, as the displacement vector obtained by equation (51) considering 0: = 1 and 
all other stress components equal to zero. Obvious equivalent definitions hold for vectors u, 
and u,,. Let us also define the 'normalized' initial stresses u* as the ratio between the in 
situ stresses and the elastic modulus of the rock mass: 

7 y  

Then, a linear relationship can be established between the displacements u and the stresses a*; 

Ua* = u (53) 
where 

u = cu, u, u,,l (54) 

The displacement components that do not correspond to measured quantities in the field can 
be eliminated from equation (53). Let us assume that this reduction has been already done and 
consider, in what follows, that equation (53) concerns only the displacement components 
determined in situ. Since in practice only relative displacements Au can be easily evaluated, which 
are related to the absolute ones u by a suitable transformation matrix T, 

AU = TU (55)  

TUU* = AU (56) 

it is convenient to rewrite equation (53) in terms of the measured relative displacements: 

If the number of measured displacement Au is greater than the number of the components of 
vector u* (which is equal to 3, cf. equation 52), a least square minimization can be applied 
to equation (56), obtaining the following system of three linear equations: 

[TU]T[TU]~* = [TUIAU (57) 
The solution of equation (57) leads to the normalized initial stresses u*, that represents the 
final results of the back analysis. On the basis of these results it is possible to assess quantitatively 
the stability of the opening and the overall conditions of the rock surrounding it. 

Consider in fact the case in which a reasonable value of the in situ vertical stress o; can be 
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worked out, e.g. on the basis of the weight of the overburden. The elastic modulus of the rock 
mass E ,  can be determined dividing 0; by the corresponding normalized stress (cf. equation 52). 
The accuracy of this modulus is controlled, introducing it in a finite element simulation of the 
excavation and comparing the numerical results with the displacements measured in the field. 

If the back calculated modulus is sufficiently close to the one adopted during design, it can 
be concluded that the initial hypotheses on the characteristics of the rock mass are in agreement 
with the actual in situ conditions and no changes in the design are needed. On the contrary, if 
the back calculated modulus is markedly lower than the design value, some modifications of 
the original design could be necessary. 

The normalized stresses can also be adopted for evaluating a set of equivalent nodal forces 
that correspond to the right-hand-side term of equation (51) and that lead, through a standard 
finite element analysis, to the strain state around the opening. Note that, due to definition 
adopted for these forces, the finite element analysis cannot define the actual stress state. 

The excavation is stable if the above shear strain distribution does not exceed the ‘critical 
strain’ of the rock. Experimental investigation has proved in fact 5738 that the critical strain, 
defined as the ratio between rock strength and elastic modulus, is a parameter suitable for 
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Figure 13. Comparison of  back analyzed displacements with measured values (after Reference 54) 

defining the limit mechanical resistance of the rock mass. An interesting characteristic of the 
critical strain is that its value is weakly influenced by existing joints, specimen size and other 
structural characteristics. Therefore, in addition to costly in situ tests, relatively cheap laboratory 
tests can also be used for determining a reliable value of this parameter. An approximate method 
has been also presented in Reference 59 for determining, on the basis of the mentioned quantities, 
the so-called ‘plastic’ zone that may develop around the opening. 

The described technique has been applied to a back analysis problems4 concerning two double 
track railway tunnels and two double lane highway tunnels excavated in a relatively homogeneous 
weathered granite (Figure 11). Although the tunnels have a limited length (about 200m), this 
project presents some notable characteristics due to the presence of four parallel tunnels, situated 
very close to each other, and to the limited overburden (about 30m). 

Displacement measurements were conducted during the construction of a work tunnel, 
excavated in advance of the main tunnels and almost parallel to them. To this purpose sliding 
micrometers and inclinometers, installed from the ground surface, were used. The positions of 
these instruments, and the directions chosen for some convergence measurements, are shown in 
Figure 12. These displacements were adopted as input data in a back analysis of the rock mass 
elastic modulus, in which suitable values for the vertical in situ stress and Poisson’s ratio of the 
rock were assumed, and the shotcrete lining was neglected because of its small thickness. 

In Figure 13 a comparison is presented between some of the measured displacements and the 
corresponding ones obtained from a finite element analysis based on the back calculated modulus. 
Finally, the strain distribution at the end of constructions of the main tunnels, determined with 
a finite element analysis (Figure 14) in which the back calculated normalized initial stresses were 
introduced, is shown in Figure 15. 

Alternative approaches for back analyses related to tunnels have been proposed and applied 
by various authors. As an example, two of them are mentioned here that can be seen, in a sense, 
as derived from two different ‘philosophies’ for the interpretation of field measurements. 
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Figure 14. Finite element mesh for the main tunnels (after Reference 54) 

The approach proposed in reference 60 is among those that cast the back analysis problem 
within a relatively sophisticated mathematical framework. In fact, least squares and a maximum 
likelihood formulations are used for determining the elastic constants of a layered soil deposit 
surrounding a shallow railroad tunnel. The same authors also discuss a procedure for evaluating 
the coefficient of lateral earth pressure K O  on the basis of displacements measured during 
excavation. They show that a unique ‘optimum’ for this parameter does not exist, but that a 
range can be determined within which the optimal value of the parameter will fall. 

A more practically orientated approach,6 - 6 3  has been adopted for interpreting the measure- 
ments performed during the construction of large underground cavities and of powerhouse 
caverns. The back analyses are based on a sequence of finite element calculations where the 
input data are suitably modified by the designer until a satisfactory agreement is reached between 
numerical and experimental results. Here the optimization algorithm is replaced by the judgement 
and the experience of the engineer. In spite of its simplicity this procedure, when properly applied, 
is able to provide satisfactory results especially when dealing with complex, three dimensional, 
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Figure 15. Maximum shear strain distrihution around the main tunnels evaluated by back analysis (after Reference 54) 

problems that would be perhaps difficult to handle by means of the previously described 
minimization methods. 

CONCLUSION 

A survey has been presented of some recent developments of the numerical techniques for back 
analysis in the field of geomechanics. These methods are seen as practical tools for reducing the 
uncertainty often affecting the parameters to be used in the design of complex geotechnical works 
or for refining during time, i.e. when data from field observations become available, the parameters 
adopted at the preliminary design stage. 

Various problems have been discussed concerning the use of in situ measurements performed 
during construction and/or excavation works for identifying, or calibrating, the pressure exerted 
by the rock on supporting structures, the in situ stress state and the material parameters of rock 
masses. These problems have been considered only in the context of static material response 
and with particular reference to tunnelling problems. 

Nowadays, back analysis techniques are more and more frequently used in practice because 
of two main reasons: (a) the development of fast, small size computers that permit carrying out 
the large amount of calculations required by the majority of back analysis techniques in a limited 
time and with an acceptable cost; (b) the growing use in geotechnical engineering of numerical 
(computer oriented) methods for stress analysis, such as the finite element method, that represent 
the basis of any calibration procedure. 

A parallel increase can also be observed in the research for new, more efficient back analysis 
techniques. Considering the present state of the research it appears that, among various possible 
topics for further studies, the following are of particular interest: 

1. Techniques for the calibration of complex constitutive models, for static material response, from 
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field observations. In fact, most applications presented in the literature concern relatively simple 
material models, such as elastic or elastic-ideally plastic. 

2. Extensions of back analysis techniques to dynamic problems. This is a topic intensively studied 
in mechanical engineering, but only a limited number of contributions have been presented so 
far in geotechnical engineering. Such a type of studies could have a notable importance in 
connection with soil/rock dynamics and seismic problems. 

3. Further studies toward the application to design problems of probabilistic back analysis 
procedures. This is of particular interest in geomechanics due to the intrinsic non-deterministic 
aspects of many prhctical situations. 

4. Study of procedures for determining not only the ‘best’ set of parameters for an ‘a prior? chosen 
material model, but also for defining among various possible models the one providing the best 
description of the actual behaviour of the rock mass. 
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